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Abstract

Une des instabilités les plus problématiques dans les plasmas de tokamak est appelée tearing

mode. Elle est générée par les gradients de courant et de pression et implique une reconfiguration
du champ magnétique et du champ de vitesse localisée dans une fine région autour d’une surface
magnétique résonante. Alors que les lignes de champ magnétique sont à l’équilibre situées sur
des surfaces toriques concentriques, l’instabilité conduit à la formation d’̂ıles magnétiques dans
lesquelles les lignes de champ passent d’un tube de flux à l’autre, rendant possible un trans-
port thermique radial important et donc créant une perte de confinement. Pour qu’il puisse y
avoir une reconfiguration du champ magnétique, il faut inclure la résistivité du plasma dans le
modèle, et nous résolvons donc les équations de la magnétohydrodynamique (MHD) résistive.
On s’intéresse à la stabilité de configurations d’équilibre vis-à-vis de ces instabilités dans un
système à la géométrie simplifiée appelé le tokamak cylindrique. L’étude est à la fois analytique
et numérique. La solution analytique est réalisée par une méthode de type “couche limite” qui
tire profit de l’étroitesse de la zone où la reconfiguration a lieu. On peut en effet négliger la
résistivité partout sauf dans cette zone. On obtient donc deux solutions, extérieure et intérieure,
et leur raccordement nous donne le taux de croissance de l’instabilité et la dépendance spatiale
du mode. La solution numérique est obtenue avec un code de type éléments finis d’ordre élevé et
implicite appelé M3DC1 et développé au Princeton Plasma Physics Laboratory. Des maillages
raffinés au niveau de la couche limite ont du être générés, comme on peut le voir sur l’illustration
de la page de garde. Un accord assez bon a pu être montré entre les résultats obtenus via ces
deux méthodes, confirmant la capacité du code M3DC1 à effectuer des études de stabilité en
MHD résistive.

One of the most problematic instabilities in tokamak plasmas are tearing modes. They are
driven by current and pressure gradients and involve a reconfiguration of the magnetic and ve-
locity fields localized into a narrow region located at a resonant magnetic surface. While the
equilibrium magnetic field lines are located on concentric toroidal surfaces, the instability creates
magnetic islands in which field lines connect flux tubes together, allowing for a high radial heat
transport, and thus creating a loss of confinement. In order for the magnetic field to break field
lines and reconnect, we need to take into account the resistivity of the plasma, and thus we solve
the resistive magnetohydrodynamics (MHD) equations. The linear stability of typical tokamak
equilibria against these instabilities were studied in a test case called the cylindrical tokamak with
both analytical and numerical tools. The analytical solution consists in a boundary layer analysis
(asymptotic matching) and takes advantage of the small radial width of the region where the
perturbations vary significantly. Indeed, ideal magnetohydrodynamics can be used everywhere
except in that narrow region where the full resistive problem must be solved. The numerical
solution was obtained with an implicit high-order finite elements code called M3DC1 and devel-
oped at Princeton Plasma Physics Laboratory. Adaptive meshes had to be generated to be able
to capture the sharp spatial gradients in the boundary layer. A fairly good agreement is shown
between both solutions, confirming the linear resistive capabilities of M3DC1.
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1 Introduction

I give here a report of the work I have done at the Princeton Plasma Physics Laboratory (PPPL).
This lab has been working on plasma physics to develop nuclear fusion as a clean energy source
since the very beginning of the field in the fifties. Since then, several reactor designs using magnetic
confinement were proposed and studied both theoretically and experimentally : tokamak (on which
the present report focuses), stellarator, spheromak, spherical tokamak, reversed field pinch... The
tokamak and the stellarator are the most promising devices at the moment and most of the fusion
community effort is dedicated to them, notably with the construction of respectively ITER in France
and Wendelstein 7-X in Germany.

Let us start with a brief summary of nuclear fusion. The idea is to use the energy released
when a deuterium and a tritium nuclei fuse into an helium nucleus and a neutron. In order to
make them fuse, the temperature has to be high enough so as to overcome the repulsive Coulomb
potential between the two positive nuclei. Indeed, the cross section of the fusion nuclear reaction
has a peak around 50 keV, i.e. 108 K. At that temperature the plasma is fully ionized and can thus
be confined magnetically. If we neglect the Larmor radius, charged particles follow magnetic field
lines and we then need a magnetic configuration for which field lines stay in a closed volume to
assure confinement of the plasma. Because of the divergence free nature of the magnetic field, the
simplest of such topological configurations is the torus[18], and this is why the tokamak is a toroidal
reactor.

Figure 1: Cartoon of a tokamak (Courtesy of http://www.plasma.inpe.br)

The major component of the magnetic field is toroidal and is produced by the poloidal current
in the toroidal field coils (see Fig. 1). A toroidal current is driven through the plasma with the
primary coil. This current generates the poloidal magnetic field and heats the plasma due to its
resistivity (Ohmic heating). Unfortunately, the resistivity of the plasma decreases with temperature
and thus the Ohmic heating is not sufficient to reach the desired tempeature. Auxiliary heating
is therefore needed and achieved by two main methods : high-energy neutral beam injection and
radio-frequency waves.

In order to reach ignition of the plasma, i.e. a self-sustained burning plasma, we need to have
the largest pressure and temperature possible, and for the longest discharge time possible. There
are a lot of instabilities which appear in the plasma when these parameters get large. In the best
case they only reduce confinement by permitting transport of particles or energy outward, in the
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worst case they cause disruption, which is a sudden total loss of confinement. Thus we need a model
to predict operational limits imposed by these instabilities.

We can distinguish two types of model for plasmas : fluid models, which describe only the first
moments of the particle velocity distribution (density, velocity, kinetic energy) and kinetic models,
which describe the full particle velocity distribution. Fluid models are valid when the collisionality
is high enough so that the particle velocity distribution is Maxwellian. The simplest of the fluid
models is Ideal MagnetoHydroDynamics (MHD), which is basically the Euler equations and the
Maxwell equations coupled by the ~J × ~B force and Ohm’s law. The first dissipative effect to be
taken into account to have a realistic model of a plasma is its finite resistivity, and we then obtain
Resistive MagnetoHydroDynamics.

One possible approach to solve the Partial Differential Equations (PDE) of MHD is to use a
Finite Elements method. My work has consisted in benchmarking a MHD Finite Elements code
called M3D-C1 on a test system for which we have an analytic solution using asymptotic matching.
I will first describe the test system, the cylindrical tokamak, and the asymptotic matching solution.
Then the M3DC1 code will be presented, with an emphasis of how it could be applied to the test
system. I will finally show a good agreement between the results of the analytic solution and M3DC1.

2 The Cylindrical Tokamak

In the large aspect ratio limit (the aspect ratio is the ratio of the major radius over the minor one), a
tokamak can be seen as a cylinder with periodic boundary conditions in the axial direction because
the toroidal curvature can be neglicted compared to the poloidal one. This system is called the
cylindrical tokamak and has been shown to be very valuable in predicting MHD stability, even for
finite aspect ratio tokamaks. To sum up, instead of solving the resistive MHD equations in a torus of
major radius R and minor radius a, we solve them in a cylinder with radius a and length 2πR. This
is the reason why, in the following, even though we will only work in cylindrical geometry, we will
sometimes use the words “poloidal” (torus) instead of “circumferential” (cylinder) and “toroidal”
(torus) instead of “axial” (cylinder).

The minor radius a is taken to be one or equivalently all the lengths are normalized by the minor
radius. The tokamak wall is assumed to be a perfect conductor, imposing the radial magnetic field
and the tangential electric field to be zero at r = 1. The radial velocity must vanish at the edge
as well for obvious reason. There is no boundary condition on the tangential velocity because we
assume no viscosity.

Here are the equations of resistive MHD :

∂ρ

∂t
+∇ · (ρ~v) = 0

∂~v

∂t
+ ~v · ∇~v = −1

ρ
∇p+ 1

ρ
~J × ~B

∂p

∂t
+ ~v · ∇p+ Γp∇ · ~v = (Γ− 1)η ~J2

∂ ~B

∂t
= −∇× ~E

~E + ~v × ~B = η ~J

~J = ∇× ~B
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with Γ the adiabatic index and η the electrical resistivity of the plasma. These are respectively
the conservation of mass, the conservation of momentum (the electric field exerts no force because
we assume quasi-neutrality of the plasma), the conservation of internal energy where the adiabiatic
assumption has been made, Faraday’s law, Ohm’s law in a moving frame and Ampère’s law where the
displacement current has been neglicted (non-relativistic approximation). Throughout this text we
use rationalized units for which µ0 = 1, which means that p in these equations must be understood
as the pressure in Pascal times µ0 = 4π10−7[V ·s/(A ·m)], that ρ must be understood as the density
in kilograms per cube metre times µ0, that η must be understood as the resistivity in Ohm metre
divided by µ0 and that ~J must be understood as the current density in amperes per square metre
times µ0.

2.1 Equilibrium

We are interested in axisymmetric flow-less equilibria. By setting ∂t and ~v to 0 and by neglicting
the resistive terms, we obtain

∇p = ~J × ~B

Assuming only radial dependance of the equilibrium quantities, the equilibrium equation becomes

dp

dr
− JθBz + JzBθ = 0

with Jθ = −dBz

dr , Jz = 1
r

d
drrBθ, Jr = 0 and Br = 0. The fact that the radial component of

the magnetic field vanishes means that magnetic surfaces are nested concentric cylinders on which
magnetic field lines twist (see figure 2).

Figure 2: Sketch of magnetic surfaces [3] (Bφ ≡ Bz)

These equilibria are thus defined by two arbitrary radial profiles amongst three (Bz, Bθ and p),
the third one being computed with the equilibrium equation. The toroidal current (or equivalently
the poloidal magnetic field) and the pressure are often chosen as input. For the poloidal magnetic
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field profile, we use the so called “peaked model” defined by Furth, Rutherford and Selberg[14](FRS)
because it is well studied and analytically tractable :

Bθ = B̂θ
x

1 + x2

with x = r/r0, r0 being a measure of the toroidal current channel width. In the FRS paper, only
the pressure-less case is treated. We extend this work by adding a parabolic pressure profile :

p = p̂(1− r2)

We can now calculate the toroidal magnetic field Bz by integrating the equilibrium equation
from the wall at r = 1 :

d

dr

1

2
B2

z = −
dp

dr
− Bθ

r

d

dr
rBθ

Bz =

√

Bz(1)2 − 2p− 2

∫ r

1

Bθ

r′
d

dr′
(r′Bθ) dr′

Using the aforementioned Bθ profile, we find

∫ r

1

Bθ

r′
d

dr′
(

r′Bθ

)

dr′ =

(

B̂θ

)2

2





(

1 +

(

1

r0

)2
)−2

−
(

1 +

(

r

r0

)2
)−2





The toroidal magnetic field at the edge Bz(1) is usually normalized to one. It is an experimentally
tunable parameter because it is controlled by the current in the coils only and not by the current
in the plasma. The remaining equilibrium parameters are thus r0, B̂θ and p̂. We can define a
dimensionless number :

β =
p
B2

2

=
2p̂

Bz(1)2
= 2p̂

r

B
p

B
z

r

r
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r

q
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Figure 3: Typical equilibrium profiles. Note that Bz is almost not affected by the plasma and
remains close to his imposed value at the edge. The safety factor q = rBz/RBθ is defined in the
following.
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which is the ratio of the plasma pressure to the magnetic pressure, and which goes approximately
from 10−3 to 10−2 in most tokamaks.

The equilibrium density is assumed uniform and normalized to one.

3 Linear Stability

In order to evaluate the linear stability of such equilibria, we decompose each quantity into an
equilibrium and a perturbation part :

ρ = ρ0 + ρ1(r, θ, z)

~B = ~B0(r) + ~B1(r, θ, z)

~v = ~v1(r, θ, z)

p = p0(r) + p1(r, θ, z)

We inject these expressions into the resistive MHD equations and we keep only the terms linear
in the perturbation to finally obtain

ρ0
∂~v

∂t
= (∇× ~B0)× ~B1 + (∇× ~B1)× ~B0 −∇p1 (1)

∂ ~B1

∂t
= ∇× (~v × ~B0 − η∇× ~B1) (2)

∂p1

∂t
= −~v · ∇p0 − Γp0∇ · ~v (3)

∂ρ1

∂t
= −∇ · (ρ0~v) (4)

The perturbed density ρ1 appears only in the last equation and is thus decoupled from the other
quantities. We assume an exponential time dependance eγt for all perturbed fields and use the
Lagrangian displacement ~ξ = 1

γ~v rather than the velocity [2] :

ρ0γ
2~ξ = (∇× ~B0)× ~B1 + (∇× ~B1)× ~B0 −∇p1

~B1 = ∇× (~ξ × ~B0 −
η

γ
∇× ~B1)

p1 = −~ξ · ∇p0 − Γp0∇ · ~ξ

(5)

(6)

(7)

This is basically the system of equations we will solve throughout the present paper.
We assume a helical perturbation with m the number of oscillations along 2π in the circumfer-

ential (poloidal) direction and n the number of oscillations along 2πR = 2π/k in the axial (toroidal)
direction :

~ξ = ~ξ(r)ei(mθ−nkz)

The same spatial dependance is assumed for ~B1 and p1. The system of PDE then simplifies into a
system of ODE in the radial direction, r going from 0 (axis) to 1 (boundary).

Notice that the trajectories on which such perturbation field is constant are, for a given r, lines
twisting on the cylindrical surface of radius r, just as the equilibrium magnetic field lines shown in
figure 2. We have indeed

∇(mθ − nkz) = m

r
θ̂ − nkẑ
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and thus if we look for a vector ~G perpendicular to this gradient, we find

~G ∝ nkθ̂ +
m

r
ẑ

If we define the pitch angle α by the angle between the field line and θ̂, we have for the field lines
of ~G

tan(α) =
m

rnk

while, for the equilibrium magnetic field lines, we have

tan(α) =
Bz0

Bθ0

We can conclude that the field lines will be superposed, or equivalently the perturbation will be
constant along equilibrium magnetic field lines, on the cylindrical surface of radius rs such as

m

rsnk
=
Bz0(rs)

Bθ0(rs)
⇔ q(rs) =

m

n

where

q(r) =
rBz0(r)k

Bθ0(r)

is called the safety factor (you can find a typical q profile in figure 3). In a torus, it gives the ratio
of the times a magnetic field line travels around the torus “the long way” (toroidally) to “the short
way” (poloidally). In the cylindrical tokamak, it gives the length in z (normalized by 2πR) that is
travelled by a magnetic field line during one twist in the circumferential direction.

3.1 Ideal Stability

3.1.1 Preliminary results

We can easily understand why a (m,n) instability will occur in the vicinity of rs. In ideal MHD
(we will suppose η = 0 in this section), the restoring force is the “tension” in the magnetic field
lines that tries to prevent them to bend. We can easily see that if the perturbation of the magnetic
field is not constant along the equilibrium magnetic field, this will cause the magnetic field lines to
bend and there will be a restoring force. But if the perturbation is constant, then the field line is
“translated” and there is no bending and thus no restoring force. The perturbation field will thus
be singular at rs. This “translation” gives this instability its name, the “interchange” instability
because when the field lines are translated, it seems like they interchange place.

In order to quantify this “tension” in the magnetic field lines, let us go back to the equation of
motion

ρ
D~v

∂t
= −∇p+ (∇× ~B)× ~B

and, using vector calculus, rewrite it as

ρ
D~v

∂t
= −∇(p+

~B2

2
) + ~B · ∇ ~B

We have decomposed the magnetic force into a magnetic pressure ~B2/2 and a tension in field lines
~B · ∇ ~B. Now we linearize this equation around the equilibrium and rewrite it in function of the
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lagrangian displacement. We obtain by doing so equation 5 rewritten by using vector calculus
identities

ργ2~ξ = −∇( ~B0 · ~B1) + ~B0 · ∇ ~B1 + ~B1 · ∇ ~B0 −∇p1 (8)

As we will show later on, in ideal MHD, the magnetic flux is frozen into the fluid and thus
the fluid follows the bending of field lines. This motivates us to try the following ansatz for the
perturbation fields : ~B1 = br r̂, ~ξ = ξrr̂. This corresponds to a stretching of the magnetic field lines
perpendicular to the magnetic surface. By injecting this into equations 8 and 6 and projecting on
r̂ we get

ρ0γ
2ξr =

(

Bθ0im

r
−Bz0ink

)

br −
dp1

dr

br =

(

Bθ0im

r
−Bz0ink

)

ξr

where we have used ~B0 · ~B1 = 0, ∂θ = im/r, ∂z = −ink and Br0 = 0. We finally obtain

ρ0γ
2ξr =

(

Bθ0im

r
−Bz0ink

)2

ξr −
dp1

dr
= −

(

Bθ0n

r

)2
(m

n
− q

)2
ξr −

dp1

dr
(9)

where we can clearly see that the restoring force vanishes for rs such as q(rs) = m/n. The instability
will thus appear in the vicinity of rs, and will be driven by the pressure appearing in the second
term (−∂rp1).

If we suppose p1 = 0 and q 6= m/n, we get a wave equation with a frequency given by

γ = i

(

Bθ0im

r
−Bz0ink

)

≡ iω

This is no other than the shear Alfven wave, the magnetic analogue to waves propagating on an
ordinary string under tension. If we define ~k = ∇(mθ − nkz), we have for the group velocity

~vg = ∇~k
ω = vAB̂0 with vA =

|| ~B0||√
ρ0

and B̂0 =
~B0

|| ~B0||

As a reminder, the vacuum permeability µ0 is one in our units system and the Alfven velocity
becomes thus in SI units vA = || ~B0||/

√
ρ0µ0. If we allow for compressible motion, we get the fast

and slow magnetosonic waves. Their phase velocity is given in figure 8.
In ideal MHD, the magnetic flux is “frozen” into the fluid and thus in order to “break” field lines,

resistivity is needed to allow for some diffusion of the magnetic field (you can find a demonstration
of this result in the appendix “Frozen in theorem”). This means that ideal MHD does not allow any
change in topology of the magnetic field lines, because they cannot break and reconnect. We can
relax this constraint by adding some resistivity that adds the laplacian term in equation 2 which
is typical of the diffusion process. We can measure the impact of resistivity on this equation by
making it dimensionless :

B

tA

∂ ~̂B

∂t̂
=
BvA

a
∇̂ × (~̂v × ~̂B) +

B

a2
η∆̂ ~̂B

∂ ~̂B

∂t̂
= ∇̂ × (~̂v × ~̂B) +

1

S
∆̂ ~̂B

S =
tR
tA

=

a2

η
a

vA

=
avA

η
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with a the minor radius, tA = a/vA the Alfven time, tR the resistive time and S the Lundquist
number i.e. the ratio of the resistive time tR, time scale of the resistive diffusion processes, over the
Alfven time tA. In modern fusion experiments, this number is typically in the range S ∼ 106 − 1012

[6]. In our units system, the Alfen velocity, the Alfven time and the minor radius are unity, and
thus we have S = η−1.

Ideal instabilities will have growth rates of order 1/tA while resistive instabilities will have much
lower growth rates of order 1/tR. This is the reason why the first step to assess the stability of a
plasma configuration consists in computing its ideal MHD stability. If it is ideally unstable, adding
resistivity makes almost no difference because S is high. If it is ideally stable, then adding resistivity
can create new instabilities called resistive instabilities which are the subject of the present work.

3.1.2 Stability condition

We have now reached the limits of the assumption ~B1 = br r̂, ~ξ = ξr r̂ and we will have to treat
perturbations in full generality to obtain stability limits on the pressure, which we have identified
as the driving force. As explained before, for η = 0, equation 6 turns into an algebraic equation,
which allows us to eliminate ~B1 as a function of the displacement ~ξ. We can eliminate p1 thanks to
equation 7 and recast the system 5 - 7 as

ρ0
∂2~ξ

∂t2
= ~F (~ξ) (10)

where we have introduced the ideal MHD linear force operator, given by[6]

~F (~ξ) = (∇× ~B0)× (∇× (~ξ × ~B0)) + (∇× (∇× (~ξ × ~B0))) × ~B0 +∇(~ξ · ∇p0 + Γp0∇ · ~ξ)

Let us define a change in potential energy due to a perturbation

δW (~ξ∗, ~ξ) = −1
2

∫

dV ~ξ∗ · ~F (~ξ)

where the integration is over the entire plasma volume.
The self-adjointness of ~F (~ξ), which can be shown by explicit calculation, allows us to use the

energy principle that states that there is an instability if, and only if, there exists a vector field ~ξ
that satisfies the boundary conditions, and such that [6]

δW (~ξ∗, ~ξ) < 0

To prove instability, it is sufficient to find a test field for which δW is negative. To prove stability,
we have to show that the minimum of δW over all permitted perturbation fields is positive. In order
to find the field for which this minimum occurs, there are two possibilities. We can either (1) use
the Euler-Lagrange equation on δW or (2) solve equation 10 with ∂t2 = 0, i.e. ~F (~ξ) = 0. We can
indeed see from the definition of δW and the self-adjointness of ~F (~ξ) that

~F (~ξc) = ~F (~ξ∗c ) = 0⇔ δW is stationnary at ~ξc

The second option is equivalent to solve for the mode with marginal stability (γ = 0).
If we choose the first case, following Newcomb[11], we can eliminate ξθ and ξz to get δW on

ξ ≡ ξr only

δW =

∫ a

0
dr

(

f

(

dξ

dr

)2

+ gξ2

)

(11)
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The Euler-Lagrange equation then reads

d

dr

(

f
dξ

dr

)

− gξ = 0 (12)

with f and g functions of equilibrium profiles only :

f(r) =
rB2

θ0(m− nq)2
n2k2r2 +m2

g(r) =
2n2k2r2

n2k2r2 +m2

dp0

dr
+
B2

θ0

r
(m− nq)2n

2k2r2 +m2 − 1

n2k2r2 +m2
+

2n2k2rB2
θ0

(n2k2r2 +m2)2
(n2q2 −m2)

The equation 12 is singular wherever f(r) vanishes, i.e. at r = 0 and at rs if q(rs) =
m
n has

a solution. The magnetic surface at rs is called the singular surface for the parameters m and n
considered. Note that m and n can be any natural number and thus there exists a singular surface
at every radius for which q(r) is rational. For the equilibrium profiles chosen, q(r) is monotically
increasing and thus there exists up to one singular surface for each (m,n) couple.

From the definition of g, we can see that a negative radial pressure gradient is always destabilizing.
This is the driving force of the interchange instability.

Following Newcomb[11][6], we define the local coordinate x = |r − rs| and expand f and g in a
Taylor series in x (the prime denotes a radial derivative and h.o.t. stands for higher order terms)

f(x) =
∞
∑

n=0

fnx
n =

rsB
2
θ0(rs)(−nq′(rs)x)2
n2k2r2 +m2

+ h.o.t. = f2x
2 + h.o.t.

g(x) =

∞
∑

n=0

gnx
n =

2n2k2r2s
n2k2r2 +m2

dp0

dr
(rs) + h.o.t. = g0 + h.o.t.

Using the definition of q, we can rewrite f2 and g0 as

f2 =
rsB

2
θ0B

2
z0

B2
0

(

q′

q

)2

g0 =
2B2

θ0

B2
0

dp0

dr

where all the quantities are evaluated at rs. We have of course fn = f (n)/n! and the same for g.
As a reminder, a singular point x0 of a homogeneous linear equation

yn(x) + pn−1(x)y
n−1(x) + ...+ p1(x)y

1(x) + p0(x)y(x) = 0

is regular if not all of pi(x) are analytic but if all of (x− x0)
n−ipi(x) are analytic in a neighborhood

of x0. If we rewrite equation 12 as

ξ′′ +
f ′

f
ξ′ − g

f
ξ = 0

and we inject f = f2x
2 and g = g0, it appears clearly that p1 ∼ x−1 and p0 ∼ x−2, and thus that

rs is a regular singular point. This allows us to look for a solution under the form of a Frobenius
expansion[12] in the vicinity of rs :

ξ = |x|σ
∞
∑

n=0

ξnx
n (13)
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By injecting the Frobenius expansion and the Taylor expansions of f and g into equation 12 and
by equating the coefficients of each power of x to zero, we obtain two solutions for σ and the ξn,
under the form of a recurrence relation :

σ± = −
1

2
±

√

1

4
+
g0
f2

ξn± =
−∑n−1

j=0 ξj±(fn+2−j(σ± + j)(σ± + n+ 1)− gn−j)

f2(σ± + n)(σ± + n+ 1)− g0

ξ± = |x|σ±
∞
∑

n=0

ξn±x
n

Both σ+ and σ− are negative because f2 is positive and g0 is negative (the pressure is monotically
decreasing with r). The two solutions are thus singular at rs as expected. The condition for σ+ and
σ− to be real and unequal is

g0
f2

> −1
4

which can be restated as a limit on the pressure gradient called Suydam’s condition

−dp0

dr
<
rB2

z0

8

(

q′

q

)2

This condition will be shown to be necessary for stability. As predicted, the pressure gradient is the
driving force of the instability. We can also understand why a high value of q′ is stabilizing. The
radial derivative of q, called the magnetic shear, gives basically the variation of the pitch angle of the
equilibrium magnetic field lines with r. Now, we know that at rs, it is the fact that this pitch angle
is equal to the one of the lines on which the perturbations are constant that creates the instability
by removing the restoring force associated with magnetic field line bending. If the magnetic shear
is higher, the pitch angle of the equilibrium magnetic field lines will thus gets far from its resonant
value on rs more quickly when r goes away from rs.

Since we have two linearly independent solutions of a second order ODE, any solution can be
written as a sum of these two. The solution with σ+ (ξ+) is called the “small” solution and the
solution with σ− (ξ−) is called the “large” solution. These names come from their behaviour at
the rational surface (x → 0) and the fact that σ± < 0 and |σ+| < |σ−|. Since equation 12 is
homogeneous, each solution is defined up to an arbitrary multiplicative constant, and thus ξ0± is
arbitrary and can be normalized to one.

The boundary condition at the edge comes from the fact that no plasma can flow into the wall
(ξ(1) = 0). The boundary condition at r = 0 needs a bit more work. In order to expand f and g
in a Taylor expansion from r = 0, we need to obtain the behaviour of Bθ0, Bz0, q and p0 for small
r. The task is easy for Bθ0 and p0 because these are input equilibrium profiles for which we have a
simple analytic form

p0 = p̂(1− r2) ≃ p̂

Bθ0(r) = B̂θ

r
r0

1 +
(

r
r0

)2 ≃ B̂θ
r

r0

. Using the equilibrium equation at r = 0 we find for the two other profiles

d

dr

1

2
B2

z0 = −
dp0

dr
− Bθ0

r

d

dr
rBθ0 ⇒

dBz0

dr
(0) = 0⇒ Bz0 ≃ Bz0(0)

13



q =
rBz0k

Bθ0
≃ q(0)

Thanks to these approximations we can rewrite f and g as f ≃ αr3 and g ≃ βr. We inject these
expressions into equation 12

d

dr

(

αr3
dξ

dr

)

− βrξ = 0

and look for a power law solution ξ = rσ. We find

σ = −1±
√

1 +
β

α
= −1±m

In the present work we are only interested in the case m > 1 because we stick to equilibrium profiles
for which q(0) is larger than one and is monotically increasing with r. It is therefore not possible
to have a singular surface with m = 1 since q(rs) = m/n has in this case no solution. The solution
with σ+ is thus regular at the origin and is the physical solution while the one with σ− is singular.
We can conclude that ξ behaves like rm−1 for r going to zero.

As stated earlier, we are interested in the minimum value of δW (ξ) over all the displacement fields
compatible with the boundary conditions. We know that this minimum occurs for the displacement
fields which are solutions of equation 12. Newcomb[11] has shown that the value of this minimum
is positive (or equivalently, that the system is stable for the given (m,n) instability) if, and only if,
(1) Suydam’s condition is fulfilled at rs, (2) the solution of equation 12 that is zero at r = 0 does
not vanish in the interval ]0, rs[ and (3) the small solution of equation 12 (ξ+) does not vanish in
the interval ]rs, 1[.

We have now a straightforward method to assess the ideal stability of an axisymmetric flow-less
equilibrium towards a helical (m,n) eigenmode in a cylindrical tokamak .

First compute the equilibrium profiles, locate the singular surface with q(rs) = m/n, and check
Suydam’s condition.

Second integrate numerically equation 12 from r = 0+ ǫ0 to r = rs− ǫl with the initial condition
ξ(ǫ0) = Cǫm−1

0 and ξ′(ǫ0) = C(m − 1)ǫm−2
0 . The constant C is arbitrary due to the homogeneous

nature of equation 12. We cannot start the integration at r = 0 because the ODE is singular there,
so we start at a small distance ǫ0 and we use the r

m−1 behaviour shown before to find the initial
conditions.

Third get the small solution by numerical integration from r = rs + ǫr to r = 1 with the initial
condition ξ(rs + ǫr) = ξ+(x = ǫr) and ξ′(rs + ǫr) = ξ′+(x = ǫr). The values of ξ+ and ξ′+ are
obtained by computing the coefficients ξn+ of the Frobenius expansion up to a certain n thanks to
the recurrence relation. Due to the deterioration of accuracy in the numerical computation of higher
order derivatives of f and g, we truncate to a low order (n=3) but choose a ǫr low enough to still
have convergence of the serie. Check if the integrated solution does not vanish in the interval ]rs, 1[.

I implemented this method in Fortan. The ODE integration was performed with the help of a
routine from the NAG library using the Backward Differentiation Formulae[17]. This implementation
was used in my code to check ideal stability before starting the resistive stability study, which is our
primary goal. Resistive effects are indeed of little importance when the system is ideally unstable
since the resistive time scale is much longer than the Alfven time scale, as explained before.

3.2 Resistive Stability - Asymptotic Matching

When the system is shown to be ideally stable, it can become unstable when resistivity is added to
the model. In this case, resistivity is important only in a thin layer at the singular surface called the
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resistive layer. The asymptotic matching method takes advantage of this property by separating the
domain into 2 regions : an “inner” resistive layer at rs which is thin enough so that the variation of
the equilibrium quantities can be neglicted and an “outer” region which takes the rest of the domain
and where resistivity and inertia can be neglicted. The idea of this method asymptotic matching
method comes from several references, namely [2][16].

Figure 4: (a) Sheared slab model of magnetic reconnection. The lines are magnetic field lines. We
can see this as a slab approximation of our system, with x = r − rs. The planes are equivalent to
the cylindrical magnetic surfaces, and the x = 0 plane is equivalent to the singular surface if we take
ẑ as the direction of ~B0 at rs and ŷ as B̂0 × r̂. Then we have ~k ≡ ∇(mθ − nkz) in the y direction.
(b) Projection of the equilibrium field lines on the x, y plane. (c) Projection of the perturbed field
lines on the x, y plane. [1]

3.2.1 Outer Region

Inertia and resistivity can be neglicted in the outer region. We look thus for the marginally stable
solutions of the linear ideal MHD equations. This means that we solve the system of equations 5 -
7 without the term ρ0γ

2~ξ in the first equation and the term η
γ∇× (∇ × ~B1) in the second one, i.e.

we solve equation 12 again
d

dr

(

f
dξ

dr

)

− gξ = 0

In order to neglict the term η
γ∇× (∇× ~B1) for vanishing resistivity, we make the assumption that γ

scales like a fractional power of η. This assumption can be shown to be consistent in figure 7 where
the growth rate calculated with this method is given in function of the resistivity. In order to neglict
the inertia term, we use the fact that the time scale on which the instability will grow will be of
the order of the resistive time, which is higher than the Alfven time by a factor of the Lundquist
number (S ∼ 106 − 1012).

We know that the solutions of equation 12 are singular and thus not physical at rs. By adding
resistivity and inertia in the inner layer around rs, we get a local solution that can match the two
singular ideal solutions on both sides of the singular surface, giving a global physical solution for
the displacement field strictly valid in the limit of vanishing resistivity.

Note that if we wanted to get the growth rate and the eigenfunction of the ideal interchange
instability treated in the last section, we would have resolved the singularity of ξ at rs by solving
an inner region equation as well, but only with inertia and not resistivity.
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This brings us to the new driving force that appears when resistivity is added : the equilibrium
toroidal current gradient, or equivalently the magnetic shear. Contrarily to the pressure gradient for
which the only values that matter are the one in the vicinity of the singular surface, for the current
gradient it is spread into the whole domain. Still, resistivity is needed only in the inner region to
permit the reconnection of the magnetic field that is resonant at rs for the same reason as for the
interchange mode, because the Alfen wave line bending stabilizing term vanishes for ~k · ~B0 = 0. In
other words, the magnetic field is perturbed following ideal MHD in an extended region on both
sides of the singular surface, and resistivity is needed in the inner region to break and reconnect
field lines coming from both sides. Modes for which the current gradient is the main driving force
are called tearing modes. The driving force coming from the pressure gradient is always present and
the modes for which it is the main driving force are called resistive interchange modes.

We can get a physical picture of how resistivity creates reconnection in a sheared magnetic
configuration in figure 4. As we can see in this figure, the reconnection open magnetic islands in
which the magnetic field has a radial component, allowing for high heat transfer along these lines
and thus creating a loss of confinement in the tokamak device.

Let us now describe the method of resolution in generality for a mode where both driving forces
are present. A sketch of this method can be found in figure 5. First we compute ξl, the solution in
the left outer region by numerically integrating from r = 0+ǫ0 to r = rs−ǫl with the initial condition
ξl(ǫ0) = Clǫ

m−1
0 and ξ′l(ǫ0) = Cl(m − 1)ǫm−2

0 as we did in the second step of the aforementioned
ideal stability method. The constant C is arbitrary due to the homogeneous nature of the ODE.

Second we compute ξr, the solution in the right outer region by numerically integrating from
r = 1 to r = rs + ǫr. The initial condition at r = 1 is ξr(1) = 0 and ξ′r(1) = Cr with Cr arbitrary
because of the homogeneous nature of the ODE. Notice that this time we compute the physical
solution of equation 12 in the right region (i.e. the one that satisfies ξ(1) = 0) while the solution
integrated in the third step of the aforementioned ideal stability method was the small solution ξ−
which does not satisfy the boundary condition at r = 1.

In order to perform the matching, we want a quantity that is independent of the arbitrary
multiplicative constants. We know that the solutions ξl and ξr can be written as a sum of the small
and large solutions

ξl = c−lξ− + c+lξ+ = c−l(ξ− +∆lξ+)

ξr = c−rξ− + c+rξ+ = c−r(ξ− +∆rξ+)

where ∆l and ∆r are the ratios of coefficients of the small to the large solution and will be used as
the matching parameters. The numerical integration from both sides gives us ξl(rs − ǫl), ξ′l(rs − ǫl),
ξr(rs+ ǫr) and ξ

′
r(rs+ ǫr). We can compute ξ+(rs− ǫl), ξ′+(rs− ǫl), ξ−(rs− ǫl) and ξ′−(rs− ǫl) thanks

to the recurrence relation giving the coefficients of the Frobenius expansion of the small and large
solutions. If we define zl as the ratio of ξl over its derivative, both obtained by numerical integration,
we can write

zl ≡
ξl(rs − ǫl)
ξ′l(rs − ǫl)

=
c−l(ξ−(rs − ǫl) + ∆lξ+(rs − ǫl))
c−l(ξ

′
−(rs − ǫl) + ∆lξ

′
+(rs − ǫl))

We can isolate ∆l to find

∆l =
zlξ

′
−(rs − ǫl)− ξ−(rs − ǫl)

ξ+(rs − ǫl)− zlξ′+(rs − ǫl)
The formulae for zr and ∆r are defined the same way.

A useful quantity is
∆′ ≡ ∆l +∆r

This is the conventional ∆′ used in several papers[14][15] discussing resistive stability of pressure-
less equilibria. Indeed, when p0 = 0 everywhere, the configuration is stable to all resistive modes
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if ∆′ < 0 and unstable to tearing modes if ∆′ > 0. But when pressure is added, all configurations
become unstable, and ∆′ only gives a measure of the driving force coming from the current gradient.

To get the physical meaning of ∆′, we can go back to the potential energy change associated with
the radial displacement W (ξ) given in equation 11 and rewrite it in function of the radial magnetic
field perturbation ψ ≡ −iB1r = Bθ0n(m/n− q)ξ/r

δW (ψ) =

∫ a

0
dr

(

H

(

dψ

dr

)2

+

(

g

F 2
+

1

F

d

dr

(

H
dF

dr

))

ψ2

)

with the associated Euler-Lagrange equation

d

dr

(

H
dψ

dr

)

−
(

g

F 2
+
1

F

d

dr

(

H
dF

dr

))

ψ = 0

where F (r) = ~k · ~B = nkBz0 + m/rBθ0, H(r) = r3/(n2k2r2 + m2) and g(r) was already defined.
The integral should be understood as

∫ a

0
=

∫ rs−ǫ

0
+

∫ a

rs+ǫ

If we insert the Euler-Lagrange equation into the potential energy integral, we recognize the inte-
grand as a derivative

δWmin(ψ) =

∫ a

0

d

dr

(

Hψ
dψ

dr

)

=

[

Hψ
dψ

dr

]rs−ǫ

0

+

[

Hψ
dψ

dr

]a

rs+ǫ

= −H(rs)ψ2(rs)∆
′

where ∆′ = (ψ′(rs + ǫ) − ψ′(rs − ǫ))/ψ(rs) and where we have supposed that ψ is continuous
(ψ(rs − ǫ) = ψ(rs + ǫ)). Since we have a second order ODE on each side of the rational surface,
and a homogeneous boundary condition on r = 0 and r = a, if we impose the continuity of ψ, we
cannot impose the continuity of ψ′, and thus it makes a jump, quantified by ∆′. Since H(r) is
always positive, δWmin and ∆

′ are of opposite signs, and thus a positive ∆′ means instable while a
negative one means stable. It is simple algebra to show that this last definition of ∆′ is equivalent
to ∆l +∆r.

r

ξ

ODE solver

Power series

rm−1

ǫrǫl

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 5: Sketch of the outer region solution for the radial displacement
.
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3.2.2 Inner Region

In the inner region, resistivity and inertia must be taken into account, i.e. we solve the system of
equations 5 - 7 without dropping any terms (γ 6= 0 and η 6= 0). On the other hand, this region is
narrow enough so that the variation of the equilibrium quantities can be neglicted. The system can
be recast in the vicinity of rs as[2][8]

d2

dx2
Ψ = U(x) ·Ψ (14)

with x = r−rs

Lr
the scaled distance from the singular surface, Ψ(x) = [B̃1r(x), ξ(x), B̃1||(x)] a vec-

tor containing the scaled radial perturbed magnetic field, the radial displacement and the scaled
perturbed magnetic field in the direction of the equilibrium magnetic field.

B̃1r(x) =
irs

nBθ0q′Lr
B1r(x)

B̃1||(x) =
−2B0k

2

q′2B2
θ0

B1||(x)

B1|| =
~B1 · ~B0

|| ~B0||
The length scale Lr that appears in the derivation of equation 14 from the system 5-7 is given by

Lr =

(

ρ0η
2r2s

n2B2
θ0q

′2

)
1

6

where all quantities are evaluated at rs. The coefficients are given by

U =





Q −xQ 0
−x/Q x2/Q −(E + F )/Q2

−x/Q −(G− E/F )Q x2/Q+ (G+ 1)Q





where Q = γ/Qr is the scaled growth rate and E, F and G, first defined in Ref. [8], are constants
characterizing the equilibrium at rs which can be written in our case as

E + F =
−2p′0rsk2

B2
θ0q

′2

F =
p′20 r

2
sk

2

B4
θ0q

′2

G =
1

Γ

B2
0

p0

where all the quantities are evaluated at rs. The growth rate scale Qr is easily found since in our
units system in which µ0 is unity, η is a diffusion coefficient and has thus the dimension of a length
squared over time. We conclude

Qr =
η

L2
r

= n
2

3
1

t
1

3

Rt
2

3

A

where we have defined the appropriate Alfven time tA =
rs
√

ρ0

Bθ
and resistive time tR = (1/q′)2/η.

We take 1/q′ as the length scale for the resistive time because the shear is the driving force for
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reconnection. Note that, while in the ideal case the magnetic shear was stabilizing because the
mode was off resonance more quickly when leaving r = rs, it is now destabilizing because it drives
the reconnection of magnetic field lines. The instability grows thus on a time scale which is hybrid
between resistive and Alfvenic.

We are now interested in the asymptotic solution of the inner equation 14 for |x| → ∞. The
inner solution for x→∞ will be matched with the outer solution for r → r+s and the inner solution
for x→ −∞ will be matched with the outer solution for r → r−s .

Actually we need only to solve the inner equation for x > 0 thanks to a certain parity conserving
property of this equation. Even solutions for Ψ1 = B̃1r(x) couple only to odd solutions for Ψ2 = ξ(x)
and Ψ3 = B̃1||(x) and vice versa[16]. A demonstration is given in the appendix “Parity conservation”.
This allows us to look for definite parity modes and gives us corresponing boundary conditions[16],
i.e. for odd modes

Ψ′1(0) = Ψ2(0) = Ψ3(0) = 0 (15)

and for even modes
Ψ1(0) = Ψ′2(0) = Ψ′3(0) = 0 (16)

The parity of the mode is thus defined following the parity of the radial displacement Ψ2 ≡ ξ.
Since the point at infinity is an irregular singular point of equation 14, we have to use a modified

version of the Frobenius expansion we have introduced before : we allow now for an exponential
“controlling factor” multiplying the power series[12]

Ψ = eS(x)|x|σ




∑∞
n=−n1

ψn,1
1

xn
∑∞

n=−n2
ψn,2

1
xn

∑∞
n=−n3

ψn,3
1

xn



 (17)

To find S(x) we take the limit of U and keep only the dominant terms

lim
x→+∞

U(x) =





0 0 0
0 x2/Q 0
0 0 x2/Q





Since U is in this limit diagonal, we are left with 3 independent Schrödinger equations

d2

dx2
Ψi(x) = λi(x)Ψi(x)

For λ1 = 0, we have d2

dx2Ψ1(x) = 0 and thus the solution for Ψ1(x) is a first degree polynomial that
will be integrated in the power series part of the ansatz of equation 17. This means that there is no
need for an exponential controlling factor for this eigenvalue, and thus S1(x) = 0. For the two other
ones, we inject the ansatz Ψ(x) = eS(x) (which is actually the WKB ansatz of quantum mechanics)
and find

S′′(x) + (S′(x))2 =
x2

Q

Near an irregular singular point, it is usually true that[12]

S′′(x) << (S′(x))2

This assumption will be shown to be consistent afterwards. We finally obtain the Eikonal equation

(S′(x))2 =
x2

Q
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whose solution is

S(x) = C ± x2

2
√
Q

with C an arbitrary integration constant. We have thus three solutions for S(x) : 0 and ± x2

2
√

Q
. We

use each of them into equation 17 and inject the ansatz into equation 14. By equating the terms
for each power of x, we find 2 solutions for σ and the coefficients ψn for each value of S(x), i.e. 6
solutions in total

Ψ1± = |x|σ1±





∑∞
n=−1 ψn,1,1±1/xn

∑∞
n=0 ψn,2,1±1/xn

∑∞
n=0 ψn,3,1±1/xn





Ψ2± = exp

(

x2

2
√
Q

)

|x|σ2±





∑∞
n=1 ψn,1,2±1/xn

∑∞
n=0 ψn,2,2±1/xn

∑∞
n=0 ψn,3,2±1/xn





Ψ3± = exp

(

− x2

2
√
Q

)

|x|σ3±





∑∞
n=1 ψn,1,3±1/xn

∑∞
n=0 ψn,2,3±1/xn

∑∞
n=0 ψn,3,3±1/xn





where the coefficients of the power series are given by a recurrence relation. The expressions of this
relation and of σ2± and σ3± are too lengthy to appear here. The crucial part is that we find

σ1± = −
1

2
±

√

1

4
− (E + F ) = −1

2
±

√

1

4
+
g0
f2
≡ σ±

where σ± are the leading exponents of the previously defined large and small solutions of the outer
equation in the vicinity of rs. Since equation 14 is a system of three second order ODEs, any solution
can be written as a linear combination of the six linearly independent solutions we have found

Ψ =
∑

i=1±,2±,3±
αiΨi

The requirement that the solution does not diverge exponentially at large x gives us α2± = 0. This
means that at large x, the solution is dominated by Ψ1±. Since the second component of Ψ, Ψ2 ≡ ξ,
is the radial displacement, the inner solution for ξ is for large x given by

ξ(i) ∼ α1+x
σ+(1 + ξ

(i)
1+

1

x
+ ξ

(i)
2+

1

x2
+ ...) + α1−x

σ−(1 + ξ
(i)
1−
1

x
+ ξ

(i)
2−

1

x2
+ ...)

where ξ
(i)
n± ≡ ψn,2,1±. We can show with the recurrence relation that the only non vanishing coeffi-

cients are even, and thus

ξ(i) ∼ α1+x
σ+(1 + ξ

(i)
2+

1

x2
+ ξ

(i)
4+

1

x4
+ ...) + α1−x

σ−(1 + ξ
(i)
2−

1

x2
+ ξ

(i)
4−

1

x4
+ ...) ≡ α1+ξ

(i)
+ + α1−ξ

(i)
−

As a reminder, x = (r − rs)/Lr and the outer solution near rs is given by

ξ(o) ∼ c+|r − rs|σ+(1 + ξ
(o)
1+(r − rs) + ξ

(o)
2+(r − rs)2 + ...) + c−|r − rs|σ−(1 + ξ

(o)
1−(r − rs) + ξ

(o)
2−(r − rs)2 + ...)

≡ c+ξ+ + c−ξ−

We can see that as long as the first term of the power series is concerned, we can identify ξ
(i)
+ as

ξ+, the previously defined small solution, and ξ
(i)
− as ξ−, the large solution. The quantity of interest
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to perform the matching is therefore ∆ ≡ α1+

α1−
, the ratio of the coefficients of the small to the large

solution.
In order to get this ratio, we need to integrate equation 14 from x = 0 where we have a boundary

condition given by equation 15 if we solve for the odd mode, and by equation 16 for the even one. We
integrate until a x large enough so that the small and large solutions are dominant and we can deduce
the ratio from the value of the function and its derivative at that point. Various implementations
of this computation are described in Ref. [16]. While I implemented the equilibrium and the outer
region equation solvers from scratch, I used a routine that had already been written by the authors
of Ref. [16] for this step. I only had to make minor changes to make it work. This routine took as
input the equilibrium parameters E,F,G and the scaled growth rate Q and returned two ratios, one
for the odd solution ∆o(Q) and one for the even one ∆e(Q). We have thus the odd inner solution
ξo = ξ− +∆o(Q)ξ+ and the even inner solution ξe = ξ− +∆e(Q)ξ+.

3.2.3 Matching

To sum up, in the right region (x > 0), the outer solution is given by

ξr = cr(ξ− +∆rξ+)

and the inner solution by

ξ(i)r = coξo + ceξe = (co + ce)ξ− + (co∆o(Q) + ce∆e(Q))ξ+

If we want the coefficients of the small and large solutions to be continuous, we impose

cr = co + ce (18)

cr∆r = co∆o(Q) + ce∆e(Q) (19)

In the left region (x < 0), the outer solution is given by

ξl = cl(ξ− +∆lξ+)

and the inner solution by

ξ
(i)
l = coξo − ceξe = (co − ce)ξ− + (co∆o(Q)− ce∆e(Q))ξ+

If we want the coefficients of the small and large solutions to be continuous, we impose

cl = ce − co (20)

cl∆l = ce∆e(Q)− co∆o(Q) (21)

By injecting equation 18 into equation 19 and equation 20 into equation 21, we are left with a
homogeneous system on co and ce whose solubility condition is given by

D(Q) ≡
∣

∣

∣

∣

∆r −∆e(Q) ∆r −∆o(Q)
∆l −∆e(Q) −(∆l −∆o(Q))

∣

∣

∣

∣

= 0

By using the bissection method to find the root of D(Q), we finally obtain the growth rate Q (the
eigenvalue). Then we solve the system to find ce, co, cl and cr and thus the spatial representation
of the mode ξ(r) (the eigenfunction).
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Let us examine under what conditions this asymptotic matching method can give accurate results.
As we have said earlier, only the first term of the power series of the large and small solutions match
for inner and outer solutions :

ξ
(i)
± (x) = |x|σ±(1 + ξ

(i)
2±

1

x2
+ ...)

ξ
(o)
± (x) = |x|σ±Lσ±

r (1 + ξ
(o)
1±Lrx+ ...)

This means that the matching must be performed in a region in which we have

ξ
(i)
2±

1

x2
<< 1 and ξ

(o)
1±Lrx << 1

This region is thus defined by
√

ξ
(i)
2± << x <<

1

ξ
(o)
1±Lr

and exists only if

E±(η) ≡
√

ξ
(i)
2±(η)ξ

(o)
1±Lr(η) << 1

We emphasize the dependance of this criterion on η because it is the small parameter that allows us
to use the asymptotic matching. We can see on figure 9 that E− becomes of order one for a certain
maximum ηc after which asymptotic matching cannot be used any more. This maximal resistivity
gets lower with lower equilibrium pressure (β). We indeed had to choose a sufficiently high beta to
find a resistivity interval in which we have accurate solutions coming from the asymptotic matching
method and from the finite elements code M3DC1. We can also notice that the function E− exhibits
a local minimum while we would expect a monotically increasing function of η. This behaviour has
never been published to our knowledge. The small solution is not a concern since E+ is always far
below one for the range of resistivity considered.

There is another reason why a higher pressure makes the asymptotic matching method more
accurate. This whole method is based on the decomposition of the solution into a large and a small
solution whose leading terms near the singular surface are, respectively, |x|σ− and |x|σ+ with

σ± = −
1

2
±

√

1

4
− (E + F ) = −1

2
±

√

1

4
+
2p′rsk2

B2
θq
′2 ≡ −1

2
± 1

2

√
1− α

where all quantities are equilibrium profiles evaluated at the singular surface and where α ≡ p′

p′
Suydam

is the ratio of the equilibrium pressure gradient at the rational surface on the maximal value for this
gradient imposed by the aforementionned Suydam condition. As a reminder, the Suydam condition
is a necessary condition for ideal stability. In order to study resistive stability we are thus interested
in the range ]0, 1[ for α. As the pressure increases, α goes to one, which makes the two exponents σ±,
and therefore the large and small function values, closer to each other. It is then more numerically
accurate to separate two contributions that are of the same order than two contributions with one
much larger than the other. More precisely, when we calculated the ratio ∆ ≡ c+

c−
of the coefficients

of the small and large solutions in the outer region solution, for example on the right side of the
singular surface, this was equivalent to solve the following linear system

(

ξ+(rs + ǫ) ξ−(rs + ǫ)
ξ′+(rs + ǫ) ξ′−(rs + ǫ)

)(

c+
c−

)

=

(

ξ(rs + ǫ)
ξ′(rs + ǫ)

)

⇔ Ax = b
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where the elements of A are obtained from the Frobenius expansion and the elements of b are
obtained from numerical integration from r = 1. If we inject in A the leading terms of the Frobenius
expansions

A =

(

ǫσ+ ǫσ−

σ+ǫ
σ+−1 σ−ǫσ−−1

)

(22)

we can intuitively guess that this matrix will be better conditioned if σ+ and σ− are closer to each
other, since it reduces the ratio of the diagonal terms. As a reminder, the condition number of a
matrix A gives a bound on the error on x a small error on b can cause. The figure 10 shows indeed
that the condition number of A is a decreasing function of α.

When the equilibrium pressure gradient vanishes at the rational surface (α = 0), we have σ− = −1
and σ+ = 0, which means that the two Frobenius expansions

ξ± = |x|σ±
∞
∑

n=0

ξ±nx
n

are not linearly independent any more. In order to make it linearly independent, we have to modify
ξ− by adding a term of the form x log |x|∑∞

n=0 ξnx
n[12] [15]. The rest of the analysis is similar.

4 The M3DC1 code

The M3DC1 code implements a high-order implicit finite element method for integrating the time-
dependent, linear and non linear, extended magnetohydrodynamic equations in two and three di-
mensions in an axisymmetric device[13]. While its extended capabilities make it useful for analyzing
existing experimental data and for predicting operational limits of future devices, I used it to solve
the aforementioned cylindrical tokamak test case for which we have an asymptotic matching solu-
tion. We can therefore benchmark the 2D linear resistive MHD capabilities of the M3DC1 code by
comparing the results obtained for the growth rate of resistive modes with the ones computed with
the asymptotic matching method. In order to get growth rates with M3DC1, I had to implement the
equilibrium used in this study, generate meshes that are refined around the singular surface where
a high spatial resolution is needed and perform a convergence study on the number of nodes and on
the time step.

The following description of the code relies heavily on several papers[13][7][10].

4.1 Temporal discretization

We want an implicit temporal discretization so that we are not limited by the Courant–Friedrichs–Lewy
condition associated with the fast and Alfven waves. This is even more important for a resistive
study because resistive instabilities grow on a much slower time scale than the Alfven time.

Let us rewrite the linear resistive MHD equations (equations 1-3) as

ρ0
∂~v

∂t
= ~F1( ~B, p) (23)

∂ ~B

∂t
= ~F2(~v) + η∆ ~B (24)

∂p

∂t
= F3(~v) (25)

where we have dropped the subscript one for the perturbation fields and where ~F1, ~F2, F3 are linear
differential operators.
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We use the method of differential approximation which consists in evaluating the right terms of
the last equations at a time tn+1/2 = tn + θδt with θ ∈]0, 1] the implicitness parameter. First we
find the velocity advance equation by using a Taylor expansion in time on ~B and p

ρ0
∂~v

∂t
= ~F1( ~B

n+1/2, pn+1/2) = ~F1( ~B
n +

∂ ~B

∂t
θδt, pn +

∂p

∂t
θδt) ≡ ~F1(B̃

n +
∂B̃

∂t
θδt)

with B̃ ≡ [ ~B, p]. In order to get the time derivative of B̃, we execute the same method on the two
other equations and we neglict the resistive term η∆ ~B (this term will be taken into account in the
field advance equation)

∂B̃

∂t
= F̃23(~v

n +
∂~v

∂t
θδt)

with F̃23(~v) = [~F2(~v), F3(~v)]. Now we inject this last relation, we use the linear property of the
operators, and we discretize ∂t~v by (~v

n+1 − ~vn)/δt to finally get the velocity advance equation

(ρ0 − θ2δt2 ~F1 ◦ F̃23)~v
n+1 = (ρ0 + θ(1− θ)δt2 ~F1 ◦ F̃23)~v

n + δt ~F1(B̃
n)

Notice that ~F1 ◦ F̃23 is no other than the aforementioned ideal MHD linear force operator ~F (~ξ) since
we find from equations 23-25 with η = 0 that

∂t2
~ξ = ~F1 ◦ F̃23(~ξ)

We can now implicitly advance the fields with the advanced velocity value

∂ ~B

∂t
= ~F2(~v

n+1/2) + η∆ ~Bn+1/2 = δtθ( ~F2(~v
n+1) + η∆ ~Bn+1) + (1− θ)δt( ~F2(~v

n) + η∆ ~Bn)

We discretize ∂t
~B by ( ~Bn+1 − ~Bn)/δt and finally obtain

(1− δtη∆) ~Bn+1 = ~Bn + δtθ ~F2(~v
n+1) + δt(1 − θ)( ~F2(~v

n) + η∆ ~Bn)

Similarly, we find for the pressure

pn+1 = pn + δtθF3(~v
n+1) + δt(1 − θ)F3(~v

n)

This method can be shown to be stable for θ ≥ 1/2 and second-order time accurate for θ = 1/2[7]. A
slightly modified version of this algorithm with better convergence properties called the Caramana
method was used[7].

4.2 Spatial discretization

In 2D mode, an unstructured triangular mesh is generated on the cross section of the tokamak (which
is in our case cicrcular). The toroidal (axial in our case of the cylindrical tokamak) dependance of
the perturbations is assumed to be e−inkz as it was for the asymptotic matching method. In other
words the axial derivative ∂z is replaced by −ink when applied to a perturbation field. On the other
hand, there is no such assumption for the poloidal (circumferential) dependance this time since the
equations are solved in full generality on the cross section.

Without loss of generality, the velocity and the magnetic field are expressed the following way[13]

~v = ∇U × ẑ +∇χ+ vz ẑ
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~B = ∇ψ × ẑ +Bz ẑ −∇⊥(∂zf)

where ∇⊥ = x̂∂x + ŷ∂y is the gradient in the plane. With this definition for ~B, the divergence free

nature of the axisymmetric equilibrium magnetic fields ~B0(r) we treat is obvious : the divergence
of the first term always vanishes, the divergence of the second term vanishes because Bz0 does not
depend on z and finally the third term vanishes because f0 does not depend on z. By imposing the
divergence of the perturbed magnetic field ~B1(r, θ)e

−inkz to vanish, we get an equation on Bz and f

∇ · ~B1 = ∂zBz1 −∆⊥(∂zf1) = 0⇒ Bz1 = ∆⊥f1

where ∆⊥ = ∇ · ∇⊥ and where we have used ∂z = −ink. Thanks to the last relation, we can keep
only f as an independent scalar field and compute Bz from it when needed. With the pressure p,
we have thus six independent scalar fields : ψ, f , U , χ, vz and p.

On each triangular element, the scalar fields are expressed as a sum of 18 polynomial basis
functions[13]

U(x, y, tn) =

18
∑

j=1

Un
j νj(x, y)

Again, we make no assumption at all on the spatial dependance of the fields in the plane, and thus
we use 2D cartesian coordinates (x = r cos θ, y = r sin θ). On each node, there are six degrees of
freedom for each scalar field, i.e. the function value, its two first derivatives (∂x,∂y) and its three
second derivatives(∂xx,∂yy,∂xy). Basis functions νj(x, y) are chosen that are piecewise quintic with
the property that the function and its first derivative are continuous across element boundaries.
Each basis function has the value 1 for one of the six degrees of freedom at one node, and has the
value 0 for every other degree of freedom on every other node.

We inject these expressions for the velocity and the magnetic field into the time advance equations
from the last section, we apply projection operators and we multiply by each basis function and
integrate over the whole domain. Then we perform integration by parts to reduce the order of the
differential operator applied to the scalar fields. The surface terms appearing from this depend
on the boundary condition applied. Homogeneous Dirichlet or Neumann boundary conditions are

Figure 6: (Left) Radial velocity profile obtained with M3DC1 for a m = 2, n = 1 instability. Note
that the m = 2 poloidal dependance appeared on its own and was not assumed anywhere in the
code (Right) Mesh used for the simulation.
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applied for a given scalar field by removing in its linear combination the basis functions that have,
respectively, its values or the value of its normal derivatives that vanish at the border.

We end up with the following matricial equations. First the velocity advance





Sv
11 Sv

12 Sv
13

Sv
21 Sv

22 Sv
23

Sv
31 Sv

32 Sv
33









U
vz

χ





n+1

=





Dv
11 Dv

12 Dv
13

Dv
21 Dv

22 Dv
23

Dv
31 Dv

32 Dv
33









U
vz

χ





n

+





Rv
11 Rv

12 Rv
13

Rv
21 Rv

22 Rv
23

Rv
31 Rv

32 Rv
33









ψ
f
p





n

where ψ, f , U , χ, vz and p are 6M vectors (M is the number of nodes), each element being the
coefficient of the corresponding basis function. The matrices S, D and R are 6M by 6M . The field
advance equation is given by

(

Sb
11 Sb

12

Sb
21 Sb

22

)(

ψ
f

)n+1

=

(

Db
11 Db

12

Db
21 Db

22

)(

ψ
f

)n

+

(

Rb
11 Rb

12 Rb
13

Rb
21 Rb

22 Rb
23

)





U
vz

χ





n+1

+

(

Qb
11 Qb

12 Qb
13

Qb
21 Qb

22 Qb
23

)





U
vz

χ





n

The pressure advance equation is given by

Sp
11p

n+1 = Dp
11p

n +
(

Rp
11 Rp

12 Rp
13

)





U
vz

χ





n+1

+
(

Qp
11 Qp

12 Qp
13

)





U
vz

χ





n

We can note that there exists two important simpler sub-systems[4][13]. The first one is obtained
by setting vz, χ, f and p to zero and by keeping only the first equation in the velocity advance and
in the field advance. This is called the two-fields (U ,ψ) reduced system. The second one is obtained
by setting χ and p to zero and by keeping only the first two equations in the velocity advance and
in the field advance. This is called the four-fields (U ,ψ,f ,vz) reduced system. These are valuable for
debugging and for better understanding of the different physical effects that appear when we allow
for more fields[13].

We can take advantage of the fact that all matrices in the previous equations are constant in
time. This means that at each time step, we solve systems of the type

A · xn+1 = bn

with A constant. If we decompose A once for all into a lower diagonal and an upper diagonal form
(A = L · U), i.e. if we perform a Gaussian elimination, then we only have to execute two back
substitution at each time step. First we solve

L · y = bn

for the vector y by back substitution from the top and then we solve

U · xn+1 = y

for xn+1 by back substitution from the bottom[6]. A package named SUPERLU[5] was used as a
LU decomposer especially efficient on sparse matrices like ours.
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4.3 Implementation of the cylindrical tokamak

In order to implement my equilibrium profiles for the magnetic field (described in section 2.1), I
first had to rewrite them under the M3DC1 form with ψ and Bz, to calculate analytically their first
and second derivatives in x and y and then to insert them into the code. A random perturbation is
applied to the scalar fields at t = 0 and then the time advance equations are used until the instability
with the largest growth rate dominates all the others. At that time, we can calculate the growth
rate with the time derivative of the total kinetic energy, which is in a very good approximation the
kinetic energy of the mode with the largest growth rate :

γ =
1

2

d

dt
log (KE) =

1

2

d

dt
log

(
∫

1

2
ρ~v2d~r

)

We can see the time evolution of the growth rate calculated this way during a simulation on figure
12. It is noisy at the beginning and then takes a stable value after a certain time.

Since the instability is highly localized at the singular surface, the mesh size had to be smaller
in the vicinity of rs. This was performed by refining an initial uniform mesh with the following
parameters : (1) the radius at which the mesh should be finer (rs in our case), (2) the mesh size in
the outer region (H), (3) the mesh size in the inner region (h) and the width on which the transition
from h to H should be done (W ). You can see a typical refined mesh and the parameters on figure
6. A zoom on the finer mesh region at the singular surface can be seen on figure 11.

The convergence of the growth rate on the mesh size was checked with a series of meshes for
which W and h/H were fixed and H was successively lowered. The convergence with the time step
was checked as well (figure 13).

5 Benchmark

As explained before, M3DC1 only allows us to calculate growth rates for the most unstable mode.
For a given n, it occurs for the lowest m such as q = m/n has a solution. Higher m modes are
stabilized by the line bending potential energy term which goes up with m. Since our q profile
is always higher than one, we studied the m = 2, n = 1 mode. The comparison between growth
rates coming from the asymptotic matching method and the M3DC1 code can be seen in figure 7.
As we know, the asymptotic matching method is no longer accurate for a resistivity that gets too
large, as this is the small parameter on which the method is based. We can for example estimate
the maximal resistivity at about 10−5 for β = 0.05 by looking at figure 9. On the other side, the
M3DC1 simulations get more demanding for lower resistivity, because the instability becomes more
localized and thus needs a finer mesh at the singular surface. The minimal resistivity is determined
by the maximal number of nodes in the mesh allowed by the random access memory available on the
machines we were using. This limit was found to be at around η = 10−7. This gave us a resistivity
range on which we could perform the benchmark, as we can see on figure 7. The agreement ranges
from 10 to 25% for the results coming from the full 6-fields resolution from M3DC1 while it goes
from 1 to 5% for the results of the 4-fields reduced resolution of M3DC1. The convergence with
the time step was also better with the 4-fields version of the simulations, as we can see on figure 13.
This could point out a bug in the equations for χ and p, the two fields removed with this version.
This would also mean that the 4-fields reduced system is sufficient to describe accurately the physics
of the problem. Since the physics removed from the full system is the compressible motion in the
plane (x, y) associated with χ, the motion in this plane should be almost incompressible. This is
coherent with the fact that the instability grows on a time scale which is hybrid between Alfvenic
and resistive. We can see in figure 8 that the velocity of the fast magnetosonic waves is much higher
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than the Alfven waves when we look at propagation nearly perpendicular to ~B. In our case, the
equilibrium magnetic field is mostly in the z direction, and thus fast waves propagate on a time
scale much shorter than Alfven waves in the (x, y) plane. These fast waves have thus time to assure
pressure equilibrium, and the motion can be considered quasi incompressible in the (x, y) plane.

The discrepancy occuring for low η can be explained by the fact that the solution gets too
localized at the singular surface and thus we reach the largest mesh possible with the memory
available and we cannot guarantee spatial convergence for these points.

Note that, while the outer solution was in both cases obtained with my code, we used two
different solutions for the inner region. The first one is the numerical one from Ref. [16] and
described in the section “Inner region” of this report. The second one is an analytical one, true only
in the limit of Q << 1 where Q is the scaled growth rate[8]. As we can see on figure 7, the results
from M3DC1 tend to confirm the first solution against the second. This is interesting because the
analytical solution is the one which is used in most papers[9] and it would be interesting to compare
the results of these papers with the ones obtained with the numerical inner solution from Ref. [16]

Resistivity η

G
ro
w
th

ra
te
γ
[t
−

1

A
]

Numerical inner sol.

Analytical inner sol.

M3DC1 Full system

M3DC1 4-fields

10−8 10−6 10−4

10−4

10−3

10−2

Figure 7: Growth rate versus resistivity for typical parameters (rs = 0.45, r0 = 0.5, k = 0.1, m = 2,
n = 1)

6 Conclusion

The cylindrical tokamak, an approximation of the toroidal tokamak in the large aspect ratio limit,
was studied both analytically and numerically. We were interested in the linear stability of typical
tokamak equilibria against instabilities mostly driven by resistive effects. We solved thus the resistive
magnetohydrodynamics equations.

The analytical solution was performed with an asymptotic matching method, using the resistivity
as the small parameter. This allowed us to separate the domain into an ideal outer region and a
narrow resistive inner region located at a certain radius called the singular surface. The matching
between the solutions in these two regions gave us the growth rate of the instability.

The numerical solution was obtained with a finite elements code called M3DC1. A random
perturbation superposed on the equilibrium was given as the initial condition and the system was
integrated in time with an implicit algorithm. After a certain time, the solution was dominated by
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the mode with the largest growth rate, which is the one we were interested in. We could compute
the growth rate with the time deriative of the kinetic energy.

In the end we compared the growth rates obtained with both methods and a fairly good agree-
ment was shown for a certain reduced version of M3DC1 in which the compressible part of the
motion was removed. This confirms the prediction that the motion is mostly incompressible for
these instabilities, and casts doubt on the accuracy of the treatment of the compressible part of the
equations in M3DC1.

The extended capabilites of M3DC1 offer a large variety of possible follow-ups for this work.
A study on the equilibrium parameters and on different equilibrium profiles would be interesting.
We could study the saturation of the same instability with the non-linear option of M3DC1. A
non-linear analytic solution exists as well and the asymptotic matching code I wrote would be useful
to implement it since the non-linear solution needs some results from the linear treatment. Finally,
the instability could be studied with M3DC1 in a more realistic toroidal geometry and the results
could be compared with experimental data.
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A Appendix

A.1 “Frozen in” theorem

We can see this property by going back to the induction equation :

∂ ~B

∂t
= ∇× (~v × ~B − η∇× ~B) = ∇× (~v × ~B) + η∆ ~B (26)

where we have used ∇ · ~B = 0. In the ideal case(η = 0), we get

∂ ~B

∂t
= ∇× (~v × ~B)

We integrate over a given surface S(t) that moves with the plasma,

∫

S(t)

∂ ~B

∂t
· ~ds =

∫

S(t)
(∇× (~v × ~B)) · ~ds =

∫

C(t)
(~v × ~B) · ~dl =

∫

C(t)
(~dl × ~v) · ~B (27)

with C(t) the contour of S(t). If we define the flux fonction Φ as

Φ(t) =

∫

S(t)

~B · ~ds

then the time derivative of Φ has one contribution coming from the time variation of the magnetic
field and one coming from the time variation of the surface :

dΦ

dt
=

∫

S(t)

∂ ~B

∂t
· ~ds+

∫

C(t)
(~v × ~dl) · ~B

(~v × ~dl is the area swept by ~dl per unit time while being convected by the velocity field). It is clear
from equation 27 that these two contributions cancel each other, giving finally

dΦ

dt
= 0

In summary, the magnetic flux on a surface moving with the fluid is constant in time in ideal MHD,
or in other words the magnetic field lines are frozen into the plasma.
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A.2 Parity conservation

We can see the parity conserving nature of equation 14 by operating the parity transformation
(x→ −x)

d2

dx2





Ψ1(−x)
Ψ2(−x)
Ψ3(−x)



 =





Q xQ 0
x/Q x2/Q −(E + F )/Q2

x/Q −(G− E/F )Q x2/Q+ (G+ 1)Q









Ψ1(−x)
Ψ2(−x)
Ψ3(−x)





Explicit calculation shows that if we suppose Ψ1(−x) = Ψ1(x), then we must have Ψ2(−x) = −Ψ2(x)
and Ψ3(−x) = −Ψ3(x) in order for the parity transformed system to be equivalent to the original
one. On the contrary, if we suppose Ψ1(−x) = −Ψ1(x), then we must have Ψ2(−x) = Ψ2(x) and
Ψ3(−x) = Ψ3(x).
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A.3 Figures

Figure 8: Phase velocity of the three types of MHD waves : (1) Alfven wave (2) fast magnetosonic
waves (3) slow magnetosonic waves in function of the angle between the equilibrium magnetic field
and ~k [1]
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Figure 9: E+(η) for typical parameters (rs = 0.45, r0 = 0.5, k = 0.1, m = 2, n = 1)
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Figure 10: Condition number of the matrix A defined in equation 22 in function of the normalized
pressure gradient α

Figure 11: Zoom on the singular surface where the mesh had to be refined because of the sharp
spatial dependance of the field. The field shown is the radial velocity.
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Figure 12: Time evolution of the growth rate during a M3DC1 simulation
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Figure 13: Convergence of the growth rate with the time step for η = 10−5. All lines are for β = 0.05
except the green one which is for β = 0.005. The asymptotic matching value for the growth rate
for β = 0.05 is 18.9 and for β = 0.005 is 15.2 . Mesh11 is a mesh of around 104 nodes while mesh21
has around 3 · 104 nodes. The converge seems better for lower β and for numvar=2.
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